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To avoid high pollution levels along the banks of a river it is desirable to site steady 
discharges somewhere near the centre of the stream. Here i t  is shown that the precise 
location of the optimal discharge site is a t  the single zero crossing of the first advection- 
diffusion eigenmode. Simple examples reveal that this position tends to be weighted 
towards the deeper parts of the channel, and towards bhe inside bank at the beginning 
of bends. 

1. Introduction 
To alleviate water-pollution problems large-scale industrial processes and sewage 

works are designed to  avoid sporadic high-level discharges, and instead are aimed a t  
steady low-level discharges. I n  confined waterways this means that far downstream 
of the outlet the contaminant load will have become distributed evenly throughout 
the flow. 

The position of a single discharge point, or the distribution of multiple discharges, 
determines the way in which the asymptotic state is approached. The most ambitious 
target would be to  minimize the peak concentration anywhere in the flow. This can 
be achieved if the discharge rate a t  each point across the flow is exactly matched to 
the local volume flow rate, i.e. the constant-concentration asymptote is attained 
immediately. 

A more practicable target is to restrict attention to a single discharge point and to  
minimize the peak concentration at  the shoreline, e.g. with the objective of minimizing 
the risk of infection for animals foraging along the banks. If the discharge site were 
too near one of the banks then the contaminant plume would reach that bank relatively 
soon with a concentration in excess of the eventual asymptote (figure 1). I n  a straight 
channel with a symmetric depth profile the shoreline concentration would exhibit 
such an overshoot unless the outlet were positioned at  the centre. Thus, the question 
being asked here amounts to: 'where is the centre of a non-symmetric or meandering 
river? '. 

For river life shoreline concentrations are unimportant. However, it is desirable 
that the zone of high concentrations be of small extent. Yotsukura & Cobb (1972; 
figures 13, 14) used the degree of mixing as a measure of the effectiveness of different 
discharge locations. Fortuitously, the definition used in the present paper for the best 
discharge site is equivalent to  requiring that complete mixing is achieved as quickly 
as possible. For sudden discharges the appropriate considerations, and the optimal 
discharge locations, are quite different (Smith 1981 a).  
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Shoreline y = y ,  

Discharge 

Shoreline y = y -  

FIGURE 1. Sketch of a contaminant plume in a river, and the conoentration 
a t  the two shorelines. 

2. Transverse diffusion equation 
I n  natural streams vertical mixing is achieved very much more rapidly than trans- 

verse mixing, i.e. 40 water depths as opposed to 100 channel breadths downstream 
(Smith 1979). Thus, when studying lateral mixing we can regard the contaminant 
concentration as being vertically well-mixed. The appropriate form of the advection- 
diffusion equation is therefore the depth-averaged equation 

ha ,c+h(u .V)c=  V . (hu .Vc) ,  with V . ( h u )  = 0, (1% b )  

where h is the water depth, u the steady flow velocity, and K the horizontal 
contaminant-dispersion tensor (which is assumed to  incorporate cross-stream 
circulation as well as turbulence). 

For steady discharges a second major simplification is that the contaminant plume 
is greatly elongated in the flow direction, i.e. by a factor of 100. Thus, we need only 
retain the cross-flow component of the diffusive flux hu . Vc. I n  a straight channel this 
leads t o  the equation 

h u a , ~  = i 7 y ( h ~ 2 2 a y ~ ) ,  (2) 

where x and y are the longitudinal and transverse co-ordinates. I n  a meandering stream 
it is first necessary to use a generalized co-ordinate system aligned along and across 
the depth-averaged flow (figure 2).  The generalization of (2) is then 

m2hui7,c = a,((m,/m,) h ~ ~ ~ a ~ c ) ,  with a,(m,hu) = 0, (3% b )  
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FIGURE 2. Orthogonal curvilinear co-ordinate system for a meandering stream. 

where ml,m2 are the metric coefficients (Yotsukura & Sayre 1976). Provided that 
there is no horizontal re-circulation (e.g. embayments), the no-flux boundary condi- 
tions for (2, 3) are applied on lines of constant y :  

( m , / m 2 ) h ~ 2 2 8 1 1 ~  = 0 on y = y-, y+.  (4) 

3. Eigenfunction expansion 
To solve (2) with the boundary conditions (4) we introduce the advection-diffusion 

eigenmodes &(y):  

2 dy (hK 22 *n) dy +,.unhu#, = 0, 

with 

J Y- J 'd- 

The normalization ( S c ) ,  in terms of the total volume flow rate Q, ensures that the 
lowest mode is 

q50 = 1 with po = 0. (6) 

If the source distribution at  2 = 0 is denoted byf(y), then the solution for c ( x , y )  
can be written 

with 



4 R .  Smith 

To generalize this solution procedure to the case of meandering streams, we must 
incorporate the x-dependence of geometrical and flow properties m,, m2, h, u, K ~ ~ .  

Instead of (5a-c) we now introduce the pair of adjoint advection-diffusion equations 

@a)  

( 8 b )  

mz huax $n = a,( (ml/mJ h ~ z 2  a, $n) + pn m2 hu$n, 

- m2 huax$n = ay((mJm2) h~22  a y  $n) + primp hu$n, 

h K 2 2 a y $ n  = h~22ay$n = 0 on Y = y-,y+, (8c)  
with 

m2 hu$, a,  & dy = m2 hu$, a, $n dy = 0. ( 8 e )  1,: 
It is this last constraint (8e) which minimizes the rate of change with respect t o  x, 
and ensures that the adjoint functions $,(x, y ) ,  &(x, y )  become independent of x when 
the channel is uniform. 

The generalization of the solution (7a, b )  for the concentration distribution c(x, y )  is 

4. Avoiding the overshoot 
At large distances downstream the approach to the asymptote will be dominated 

by the longest persisting mode. One characterization of the solutions to the Sturm- 
Liouville equations (5a-c) is in terms of increasing eigenvalues (Ince 1956, chap. 10) 

0 <pl  < p z  < ... . (10) 

Thus, unless e, = 0, (7 a)  yields 

~ -c ,+c , exp( -~ ,2 )$~(y j )  as x + m .  (11) 

A second characterization of the eigenfunctions $,(y) is in terms of their number n 
of zero crossings (see figure 3). The first non-constant eigenfunction &(y) has a single 
zero y1 and has opposite signs at  the two banks y-,y+. Thus, unless c1 = 0, the con- 
centration (1 1) will exceed the asymptote at one side of the channel. The only way to 
avoid this overshoot is to enforce c1 = 0. For a point discharge the only site that will 
achieve this condition is the single zero of $l(y): 

+l(Yl) = 0. (12) 

With c1 identically zero the asymptote (1 1) needs to be replaced by 

c N c,+c,exp ( -p2x) q52(y) as x + 03. (13) 
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FIGURE 3. Sketch of advection-diffusion eigenmodes &(y) showing their interlacing zeros. 

The second non-constant eigenfunction q5z(y) has the same sign at  the two banks y-, y+ 
(see figure 3). Thus the presence or absence of overshoot depends upon the sign of the 
coefficient c2. For a point discharge we have 

The zeros of successive eigenfunctions interlace. Hence, #z(yl) is of the opposite sign 
to  both q52(y-) and &,(y+). Consequently, the approach to the asymptote is from 
below a t  both banks, and the overshoot has been avoided. 

For meandering channels the above argument goes through virtually unchanged, 
except that the definition of the optimal source position yl(x) becomes 

c2 = C O q 5 Z ( Y J .  (14) 

$l(X,YA = 0. (15) 
The elimination of the most slowly decaying mode in the concentration distri- 

bution (7a,  9a) is quivalent to ensuring that complete mixing is achieved as quickly 
as possible. Thus, optimization with respect to shoreline concentrations yields the 
same discharge site as does optimization with respect to the degree of mixing (Yotsu- 
kura & Cobb 1972). 

5. Straight channels 

straight channel is 
A simple but realistic model for the velocity and diffusivity distributions across a 

u = Tihi%/s, K~~ = i?h*%/$ (1% 6 )  

(i.e. with the cross-stream dispersion dominated by the turbulence contribution), 
where the overbars denote cross-sectional average values (Smith 1981 a). Thus the 
eigenvalue problem (5 a, b)  becomes 

with 
hid+,/dy = 0 on y = y-,y+. 
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FIGURE 4. The positions of the optimal discharge sites 
in a semi-parabolic and in a triangular channel. 

The normalization (5c) is no longer of importance, because we are only concerned to  
locate the zero-crossing y1 of the first mode #l(y). For arbitrary depth profiles numerical 
methods would be required to determine this first eigenmode. 

One depth profile for which (17a, b)  can be solved analytically is the parabolic 
profile 

h = H (  1 - (y/B)2). (18) 

Depending upon whether the depth profile is symmetric, or only extends over the 
half-range 0 < y < B, the eigenfunctions are Gegenbauer polynomials of degree n or 
2 n  : 

#,(y) = Cg)(y/B) if y- = -B, y+ = B, ( 1 9 4  

#,(y) = C!j,"n'(y/B) if y- = 0, y+ = B ( 1 9 b )  

(Abramowitz & Stegun 1964, chap. 2 2 ) .  At n = 1 we find that the optimal discharge 
sites are 

y1 = 0 for a symmetric channel, (20a) 

y1 = B J& for a semi-parabolic channel ( 2 0 b )  
(see figure 4). 

Next, for a triangular channel 
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Combining the results (23, 25) we conclude that the optimal discharge site is 

yl = 0,607 B (26) 
(see figure 4). 

I n  both of the above examples the optimal discharge site is weighted towards the 
deeper part of the channel. The explanation is that contaminant plumes tend to curve 
towards the shallower water (Kay 1982; Smith 1981 b).  It is to counteract this tendency 
that the siting of the discharge must be weighted towards the deeper water. 

6. A meandering channel 
In  a meandering channel the complexity of the flow field (Rozovskii 1961) and the 

strong dependence of the transverse-dispersion coefficient K~~ upon the flow curvature 
(Fischer 1969), means that there is no practical alternative but to solve (8a-e) 
numerically. However, it is enlightening to investigate an idealized case in which 
some of the general features of contaminant dispersion in meandering flows can be 
revealed analytically. To do this, we assume that the velocity, depth profile, and 
transverse diffusivity are independent of the longitudinal co-ordinate x. Also, we 
assume t,hat t,he flow lines remain equispaced: 

m, = l+yp(x),  m2 = 1 .  (27) 

Thus, in the eigenfunction equations (8a-e) the x-dependence only arises via the 
changing curvature p(x).  

The deliberate resemblance to the straight-channel case permits us to make use of 
tjhe normalized eigenmodes q52)(y), where the zero superscript alludes to the zero value 
of the curvature. Thus, we pose the representations 

m 

with 
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FIGURE 5 .  The optimal discharge site in a meandering river of parabolic cross-section. 

The constraint (8 e) takes the form 

W W 

and can be transformed into an equation for g(x)  : 
a, W 

q{ 1 + a, + a1 + z a, a,} = pYll + c (pp - p p )  a, an 
n , = l  n= 1 

W m m  

+P X Yln(an+&n) + p  C C Ynjana^j. (31) 
n= 1 n = l  i = 1  

The coupling between the equations (29n-d) is quadratic in the variables p ,  7, aj ,  iij. 
Thus, if the bends are not too severe, then we can neglect the coupling and the equa- 
tions can he solved explicitly: 

r w  

6, = 2Y11/0W p(x + x’) d d ,  

The optimal discharge position yl(x) is along the zero contour of &(x,y). Prom 
( 2 8 b )  we infer that the first dependence of yl(x) upon curvature arises a t  a2. Thus, it 
is t’he curvature over a distance of order l/(pL’) -pio)) downstream of the source that 
determines the opt,imal location. The relative shapes of q5i0’, die) (see figure 3) enable us 
to infer that the displacement of yl(x) is always towards the inside of the bend. This 
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FIGURE 6. (a) For legend see p. 10. 

can be thought of as counteracting the tendency for a contaminant plume to move 
towards the outside of bends (Ward 1974, figure 7 ;  Smith 1981 b,  figure 4). 

As an explicit example, we take the depth profile to be a symmetric parabola ( 1 8 )  
with the velocity distribution and transverse diffusivity given by ( 1 6 a ,  b ) .  The nor- 
malized eigenfunctions are 

with 

Conveniently, the Yla coefficients are all zero with the sole exception of Y12: 

Y12 = - 3(%)$ ( F / G B ) .  (34) 

p(x)  = p,sin Zx, (35) 

If the curvature varies sinusoidally, 

then the resulting formula for &(x, y )  is 

Figure 5 shows how the displacement of y1 leads the changing sign of the curvature 
for the specific case 

p 0 B = 1 2 ,  EB=1- 2 ,  E / f j B =  2z. ( 3 7 )  

7. Non-optimal discharges 
I n  practice, the cost of using an optimal discharge site in relatively deep water, 

rather than a site closer to the bank, is justifiable only if there is a significant reduction 
in the pollution levels. Since the optimal site gives a minimum for the peak shoreline 
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( b )  

I I 
0 I 

Y J B  

Source position 

FIGURE 6. The peak shoreline concentration for different discharge sites 
across symmetric and semi-parabolic channels. 

concentration, nearby sites will give almost unchanged results. Thus, the key question 
becomes how flat is the minimum. 

For a straight channel the coefficients c ,  in the eigenfunction expansion (7a)  are 
given by 

where ys is the source position and @, the nth normalized eigenmode. Once c ,  and the 
decay rates ,un are known it is a straightforward numerical task to evaluate the shore- 
line concentration and to find its peak value. Figures 6(a,  b )  show the results for 
symmetric and semi-parabolic channels. Either side of the optimal site there is a 
region of about a quarter of the total channel breadth in which the peak concentration 
is within a factor of two of its minimum value. However, there is an alarmingly high 
increase in pollution levels if the discharge site is chosen to be even further away from 
its optimal location. 

Cn = co@n(Ys), (38) 

The financial support of the Royal Society and British Petroleum is gratefully 
acknowledged. 

R E F E R E N C E S  

ABRAMOWITZ, M. & STEGUN, I. A. 1964 Handbook of Mathematical Functions. Dover. 
FISCRER, H. B. 1969 The effect of bends on dispersion in streams. Water Resources Res. 5 ,  496- 

506. 
INCE, E. L. 1956 Ordinary Differential Equations. Dover. 
KAY, A. 1982 The effect of a sharp cross-stream depth ohange upon contaminant dispersion in 

ROZOVSKII, I. L. 1961 Flow of Water in Bends of Open Chanwls (transl. from 1957 Russian edn). 

SMITH, R. 1979 Calculation of shear-dispersion coefficients. In  Mathematical Modelling of T w -  

a vertically well-mixed current. J .  Hydmul. Div. A.S.C.E. (submitted). 

OTS60-5113, Department of Commerce, Washington, D.C. 

bulent Diffusion in the Environment (ed. C. J. Harris), pp. 343-362. Academic. 



Where to put a steady discharge in a river 11 

SMITH, R. 1981a The importance of discharge siting upon contaminant dispersion in narrow 

SMITH, It. 1981 b Effect of non-uniform currents end depth variations upon steady discharges 

WARD, P. R. B. 1974 Transverse dispersion in oeoillatory uhannel flow. J. Hydraul. Div. A.S.C.E. 

YOTSUKURA, N. & COBB, E. D. 1972 Transferse diffusion of solutions in natural streams. U.S. 

YOTSUKURA, N. t SAYRE, W. W. 1976 Transverse mixing in natural channels. Water Resources 

rivers and estuariea. J. Fluid Mech. 108, 43-53. 

in shallow water. J. Fluid Mech. 110. 37%380. 

100,755-772. 

am. Survey Paper, no. 58243. 

Res. 12, 695-704. 


